
NASA Contractor Report 181753

ICASE REPORT NO. 88-68

ICASE
EFFECT OF HEAT RELEASE ON THE SPATIAL STABILITY

OF A SUPERSONIC REACTING MIXING LAYER

IBASA-Cl_-1817__3) E[F)CT CE Z.[A2 RELEASE ON
RLB 5EA_IAL S_ABILIIY C_ A E_[E_SC_IC

_I:ACIINC, l'1IXI_G LIY_R _inal _el_crt [NASA_

13 p CSCL 20D

T. L. Jackson

C. E. Grosch

G313_

N89- 14_02

Unclas

0185205

Contract Nos. NASI-18107 and NASI-18605

November 1988

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING

NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

National Aeronautics and

Space Administration

t.an_oy Reseorch Center

Hampton._r0inia 23665





EFFECT OF HEAT RF_LF_ASE ON THE SPATIAL STABILITY

OF A SUPERSONIC REACTING MIXING LAYER

T. L. Jackson and C. E. Grosch 1

Old Dominion University

Norfolk, VA 23529

ABSTRACT

We have begun a numerical study of the stability of compressible mixing layers in

which a diffusion flame is embedded. In this study, we have approximated the mean

velocity profile by a hyperbolic tangent profile and taken the limit of infinite activation

energy which reduces the diffusion flame to a flame sheet. The addition of combustion in

the form of a flame sheet was found to have important, and complex, effects on the flow

stability.
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1. Introduction. Quite recently it has been realized that an understanding of the stability

characteristics of reacting compressible mixing layers is extremely important in view of the pro-

jected use of the scramjet engine for the propulsion of hypersonic aircraft. For example, Drum-

mond and Mukunda (1988) suggest that "... a single supersonic, spatially developing and reacting

mixing layer serves as an excellent physical model for the overall flow field." Thus knowledge of the

stability characteristics may allow one, in principle, to control the downstream evolution of such

flows in the combustor. This is particularly important because of the observed increase in the flow

stability at high Mach numbers (Brown and Roshko, 1974; Chinzei, Masuya, Komuro, Murakami,

and Kudou, 1986; and Papamoschou and Roshko, 1986). Because of the gain in stability, natural

transition may occur at downstream distances which are larger than practical combustor lengths. A

number of techniques which may enhance mixing are discussed by Kumar, Bushnell and Hussaini

(1987).

Perhaps motivated by this practical problem, there have been a number of theoretical studies

of the stability of compressible free shear layers in recent years. These include that of Tam and Hu

(1988) who examined the stability of the compressible mixing layer in a channel using the hyper-

bolic tangent profile. They concluded that the sound waves reflected from the wall have a major

effect on the flow stability. Zhuang, Kubota and Dimotakis (1988) also studied the mixing layer

with the hyperbolic tangent profile and found decreasing amplification with increasing Mach

number. Ragab (1988) carried out a numerical solution of the two dimensional compressible

Navier-Stokes equations for the wake/mixing layer behind a splitter plate with the streams on the

two sides of the plate having different speeds. In a linear stability analysis of the computed mean

flow, he found that increasing the Mach number leads to a strong stabilization of the flow. Ragab

and Wu (1988) examined the viscous and inviscid stability of a compressible mixing layer using
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boththehyperbolictangentandLockprofiles.Theyfoundthatif theReynoldsnumberwasgreater
than1000,the disturbancescouldbecalculatedveryaccuratelyfrom inviscidtheory. In addition,
theyreportedthatnonparalleleffectsarenegligible.

Earlierstudiesof the stabilityof compressiblemixing layersincludethoseof Lessen,et al
(1965,1966)andGropengiesser(1969). Theinviscidtemporalstabilityof thecompressiblemixing
layerto twoandthreedimensionaldisturbanceswasstudiedbyLessen,FozandZienfor subsonic
disturbances(1965)andsupersonicdisturbances(1966). Lessenet al. assumedthattheflowwas
iso-energeticand,asaconsequence,thetemperatureof thestationarygaswasalwaysgreaterthan
thatof themovinggas.Gropengiesser(1969)reexaminedthisproblem,but withoutusingtheiso-
energeticassumption.Consequentally,hewasableto treattheratioof thetemperaturesof thesta-
tionaryandmovinggasasaparameter.Hisresultsshowedthattherewasageneraldecreasein the
growthratesof theunstabledisurbances(bothtwoandthreedimensional)astheMachnumberof
theflow increased,at leastup to a Machnumberof 3. Healsoshoweda secondunstablemodein
anarrowrangeof Machnumbers,1.54< M < 1.73.

Despitethefactthatunderstandingof theflowfieldina reacting compressible mixing layer in

a scram jet engine is extremely important, there appears to be very few studies on the stability of

such flows. Menon, Anderson and Pai (1984) studied the inviscid spatial stability of a compressible

wake in which there was a H2- 02 reaction. When the reaction was turned on the flow became

completely unstable. The phase speed was found to be a monotonically increasing function of fre-

quency. It seems that their results show a complete absence of neutral or stable disturbances.

The above result appears to be in conflict with that of Drummond and Mukunda (1988).

They carried out a numerical simulation using the two dimensional, compressible, time dependent

Navier-Stokes equations with combustion in a mixing layer. The reaction was the burning of a 10%

112, 90% N2 fuel in air. They found that the nonreacting flow was very stable and that turning on

the combustion had little effect. But it should be noted that the authors were not carring out a sta-

bility calculation, per se, and did not excite the flow with disturbances with a fixed frequency. They

relied on the "natural" disturbances to perturb the flow. Finally, it should be noted that Drummond

and Mukunda found that the Lock profile (Lock, 1951) was an excellent fit to the computed mean

velocity profile beginning a short way downstream from the orgin of the mixing layer.

We have begun a numerical study of the stability of compressible mixing layers in which a

diffusion flame is embedded. The basic steady flow with which we began is that calculated by Jack-

son and Hussaini (1988). In their study the limit of infinite activation energy was used and the

diffusion flame reduced to a flame sheet. The flame sheet model is a standard approximation and

has been used in the study of the burning of a fuel particle in an oxidizing atmosphere and of the

flame at the mouth of a tube, for example (Buckmaster and Ludford, 1982; and Williams, 1985).

It is well known (see Mack, 1984) that inviscid stability theory is a reliable guide for under-

standing the stability of compressible shear flows at moderate and large Reynolds numbers (Re >

103). Thus we considered only the inviscid spatial stability problem. We consider the Mach

number range 0 < M < 10. Our results suggest that this range of Mach numbers (relative to the

moving stream) is sufficient to deduce the asymptotic (M _ _) structure of the solutions.
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Webeganourstudyby takingthemeanvelocityprofilein the mixinglayerto bethatof the

Lock profile. In the course of carrying out the stability calculations for this profile with different

sets of values of the basic parameters we noted some quite interesting features of the solutions,

particularly at higher Mach numbers. In order to examine these features in more detail, we

replaced the Lock profile with a hyperbolic tangent profile. This is a reasonable approximation to

the Lock profile and has been used in studying the stability of compressible mixing layers, for

example, Tam and Hu (1988), Ragab and Wu (1988), and Zhuang, Kubota and Dimotakis (1988).

In section 2 we give the basic flow profile and the small amplitude disturbance equations. The

boundary conditions and numerical method are also discussed in this section. Section 3 contains a

presentation of our results and conclusions are given in section 4.

2. Formulation. The nondimensional equations governing the steady two dimensional flow of

a compressible, reacting mixing layer which lies between streams of reactants with different speeds

and temperatures are given by Jackson and Hussaini (1988). In the limit of infinite activation

energy, the thin diffusion flame reduces to a flame sheet. The nondimensional temperature T and

mass fractions Ci profiles are given by

= 1- (1- [3r- [3)(l-U) + -_21 M2U(1-U), C1 = 2U - 1, Cz=T 0, (2.1)

for r I > 11f in the moving stream, and

= [3r + (1- [3T + [3) U + "_21 M2U(1-U),T C1 0, C2= 1 2U, (2.2)

for r I < 11/ in the stationary stream. Here, "q/ gives the location of the flame sheet where both

reactants vanish, 13r is the ratio of the temperature of the stationary stream to that of the moving

stream, 7 is the ratio of specific heats, and [3 is the nondimensional heat release parameter. Figure

1 shows the variation of T with 11 for various values of [3. The discontinuity in the slope is due to

the flame sheet approximation. Note that if [3r is less than one, the stationary gas is relatively cold

compared to the moving stream, and if I3T is greater than one it is relatively hot. As discussed in

the introduction, we assume here that

1
U = _ (1 + tanh(l])), (2.3)

which approximates the Lock profile and can be handled analytically.

The flow field is perturbed by introducing wave disturbances in the velocity, pressure, tem-

perature, density and mass fractions on either side of the flame sheet with amplitudes which are

functions of 71. For example, the pressure perturbation is

p = I-I(11) exp[i (ax - cot)], (2.4)

with 17 the amplitude, a the wavenumber in the downstream (x) direction, and co the frequency

which is taken to be real. Substituting the expression (2.4) for the pressure perturbation and simi-

lar expressions for the other flow quantities, it is straightforward to derive a single equation

governing l-I, given by

CO

FI" U-c2U I-I'- otZT [T - M2(U-c)2]II= 0, c = --,a (2.5)
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withc beingthecomplexphasespeedandprimesindicatingdifferentiationwith respectto thesimi-
larityvariablerb In (2.4),atiscomplex.Therealpartof atis thewavenumberin thex direction,
while the imaginarypartof at indicates whether the disturbance is amplified, neutral, or damped

depending on whether at_ is negative, zero, or positive.

The boundary conditions for 17 are obtained by considering the limiting form of equation

(2.5) as r I _ + _. The solutions to (2.5) are of the form

where

I7 ---)exp(+ f2+ 1]) , (2.6)

L'_/2+ = at2[1_ M2(1_C)2], _2_ = at2_T [_T -- M2C2] • (2.7)

Let us define c+ to be the values of the phase speed for which _22± vanishes. Thus,

c+ = 1- 1/ g , c_ = _ -ff-TT/ M . (2.8)

Note that c+ is the phase speed of a sonic disturbance in the moving stream and c_ is the phase

speed of a sonic disturbance in the stationary stream. Across the flame sheet, I-I and I-I" are con-

tinuous.

The nature of the disturbances and the appropriate boundary conditions can now be illustrated

by reference to Figure 2, where we plot c± versus M. In what follows we assume that at2r > at2i.

These curves divide the c,- M plane into four regions. If a disturbance exists with a M and cr in

region 1, then f22+ and I22 are both positive, and the disturbance is subsonic at both boundaries.

In region 3, both D 2÷ and _ 2_ are negative and hence the disturbance is supersonic at both boun-

daries. In region 2, _2+ is positive and £22_ is negative, and the disturbance is subsonic at +,,o and

supersonic at -,,0. Finally, in region 4, _22+ is negative and D2__ is positive so the disturbance is

supersonic at +,,_ and subsonic at -,,o.

One can now see that the appropiate boundary condition for either damped or outgoing waves

in the moving and stationary streams are, respectively,

-_+rt -i'q _/ - f/2+

Fl--)e , if c > c÷, 17---)e , if c < c+, (2.9a)

H--)e - , if c < c_, I7---) -, if c > c_. (2.9b)

To solve the disturbance equation (2.5), we first transform it to a Riccati equation by setting

Thus, (2.5) becomes

-I s

G - (2.10)
atT l-I "

G'+ otTG 2 . 2U' T"
- L_-'_-c- -T ]G = at[T - M2(U-c)2]. (2.11)

The boundary conditions can be found from (2.9) and (2.10), with G continuous across the flame

sheet.

The stability problem is thus to solve equation (2.11) for a given real frequency co and Mach

number M, with U and T defined by (2.1)-(2.3). The eigenvalue is the wavenumber at. Because



-5-

thisequationhasa singularityat U = c, we shall integrate it along the complex contour (-6,-1) to

(0,0) and (0,0) to (6,-1). We iterate on _ until the boundary conditions are satisfied.

3, Results. In all of our calculations reported here we have taken y = 1.4, 13r = 2,

0< 13< 5, and0< M < 10.

In Figures 3 and 4 we show the phase speeds of the neutral waves and the corresponding

maximum growth rates, respectively, for the nonreactive (13 = 0) mixing layer (Jackson and

Grosch, 1988). From Figure 3 one can see that there is only a single fast regular neutral mode in

region 1 which is subsonic at the boundaries. This modes ceases to exist at the Mach number (Ms)

at which its phase speed equals that of a sonic wave. Beyond M s (region 2) the mode is

transformed into a singular neutral mode which is subsonic at one boundary and supersonic at the

other. In addition, a slow singular neutral mode appears in region 4. In regions 2 and 4 there are

unstable waves with phase speeds between that of the singular neutral mode and that of the sonic

neutral mode. Thus, there are two bands of unstable frequencies for Mach numbers greater than

M s. One of these bands is a group of fast and the other a group of slow unstable waves. The phase

speeds of both the fast and slow modes have a small range about the average, so that little disper-

sion of wave packets is expected, with a reduction in the dispersion as the Mach number is

increased. From Figure 4 it is apparent that an increase in the Mach number results in a decrease

of the growth rate of the fast mode by a factor of three or four up to about M r, and for higher

Mach numbers this growth rate levels off and eventually begins to increase with increasing Mach

number. The growth rate of the slow mode is comparable to that of the fast mode for Mach

numbers greater than Ms.

The addition of heat release (13 > 0) was found to have important, and complex, effects on

the flow stability. In contrast to the nonreacting case, Figure 5 shows the existence of multiple reg-

ular neutral modes for M = 0. There are two regular modes, fast and slow, and a singular mode

adjacent to the slow mode. The fast mode exists for all values of ]3, but the slow modes only exist

for 13 > 1. The maximum growth rates for the unstable waves are shown in Figure 6. An increase

in 13 results in a reduction in the growth rate of the fast wave and an increase in the growth rate of

the slow wave. For sufficiently large 13 these curves cross so that the slow mode becomes the most

unstable.

The phase speeds of the neutral modes as a function of Mach number for 13 = 1, 2, 5 are

shown in Figures 7-9. An increase in the value of 13 causes an increase in the phase speed of the

fast neutral mode in region 1. In all cases, the fast regular neutral modes are transformed into

singular neutral modes in region 2 at Ms. For higher Mach numbers, there are unstable waves with

phase speeds between that of the singular neutral mode and that of the sonic neutral mode. It can

be seen that the addition of heat release has a major effect on the slow modes. For 13 > 1, there

are both regular and singular modes in region 1. Again, there are unstable waves with phase speeds

between that of the slow neutral modes in region 1 and between that of the singular neutral mode

and the sonic mode in region 4. Even with combustion heating, the maximum growth rates of the

unstable waves, shown in Figures 10-12, decrease by a factor of three to four as the Mach number

approaches M s . As in the nonreacting case, for Mach numbers greater than Ms, the growth rates

level off and eventually begin to increase with increasing Mach number. The rate at which the
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growthratesincreasewithMachnumberis differentthanin thenonreactingcase.Also,increasing
theheatreleasegenerallyincreasesthegrowthrateof theslowwavesanddecreasesthatof thefast
waves.

4. Summary.Theadditionof combustionin the form of a flamesheetwasfoundto have
important,andcomplex,effectson the flowstability.In contrastto thenonreactingcase,wehave
showntheexistenceof multipleregularneutralmodesfor MachnumberswhicharelessthanMs.

For Mach numbers greater than Ms, there are two bands of unstable frequencies (just as in the

nonreacting case); one a group of fast waves and one a group of slow waves. The range of phase

speeds in each band is small about the average, so even with chemical heating there is little disper-

sion of wave packets. Even with heating, the maximum growth rates of the unstable waves

decrease by a factor of three to four as the Mach number approaches M s. As in the nonreacting

case, for Mach numbers greater than Ms, the growth rates level off and eventually begins to

increase with increasing Mach number. The rate at which the growth rates increase with Mach

number is different than in the nonreacting case. The overall effect of increasing 13 is to first stabil-

ize the flow and then to destabilize it.
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